NUMERICAL PANTO FLASHOVER PROTECTION RELAY AR10 [AN+ SERIES]

USER MANUAL

ALUMINIUM INDUSTRIES LIMITED RELAYS DIVISION, THIRUVANANTHAPURAM

<u>AR10</u>

Numerical Panto Flashover Protection Relay CONTENTS

SAFETY REQUIREMENTS	AR10-I
INTRODUCTION	AR10-II
HANDLING INSTALLATIONS & CASE DIMENSIONS	AR10-III
USER GUIDE	AR10-IV
TECHNICAL DATA & CHARACTERISTIC CURVES	AR10-V
TROUBLE SHOOTING	AR10-VI
COMMUNICATION	AR10-VII

Page 1 of 7 AR10-I

SAFETY REQUIREMENTS

_	_					_
\mathbf{C}	\sim	r I-	тг	- N	18	$\overline{}$
	()	IVI		-17		•
•		··				. 1

INTRODUCTION
HEALTH AND SAFETY
SYMBOLS AND EXTERNAL LABELS ON THE RELAY
INSTALLING, COMMISSIONING AND SERVICING
DECOMMISSIONING AND DISPOSAL
TECHNICAL SPECIFICATION FOR SAFETY

INTRODUCTION

Before using this product, be sure to read this chapter carefully.

This chapter describes safety precautions when using the relay. Before installing and using the equipment, read and understand this chapter thoroughly.

It's not a secret - electricity can be dangerous and when things go wrong lives can be at stake!

Electrical engineers are Industrial safety doctors, so it's our duty to keep employees health and maintain a quality of life that we all deserve by providing safe work practices to avoid electrical accidents.

How much electricity is dangerous?????

CURRENT	EFFECT
0.5 – 3mA	Tingling sensations
3 – 10mA	Muscle contractions (painful)
10 – 40mA	"can't let go" phenomena
40 – 75mA	Respiratory paralysis (possibly fatal)
75 – 200mA	Ventricular fibrillation (likely fatal)
200 – 500mA	Heart clamps tight
>1.5A	Tissue and organs began to burn

Fact: A 15 amp circuit breaker was designed to protect equipment - not people!

The relay is developed with zero percentage of risk factor by its own design. The current carrying paths and circuits are isolated from the metal case and structure. Suitable clearance depending on the type of insulation required for different classes are provided.

The relay confirms to Product safety requirement standard IEC 60255-27.

HEALTH AND SAFETY

It deals with the handling of relay in proper way. An individual to be considered as 'qualified' with regard to certain equipment in the workplace, but 'unqualified' as to other equipment. "An employee, who is undergoing on the job training and who, in the course of such training, has demonstrated the ability to perform duties safely at his or her level of training and who is under the direct supervision of a qualified person also considered to be a qualified person for the performance of those duties."

The following requirements must be met, in the order given, before circuits or equipments are re-energized, even temporarily.

- People handling the equipment should be aware about the relay safety handlet.
- Ensure that the product is in the off condition before working on the conducting or terminal side.
- A qualified person must conduct tests and visual inspections, as necessary, to verify that tools electrical jumpers, shorts, grounds and other such devices have been removed, so that the circuits and equipments can be safely re-energized.
- ♣ Employees exposed to the hazards associated with re-energizing the circuit or equipment must be warned to stay clear of the circuits and equipment.
- ♣ Each lock and tag must be removed by the employee who applied it or someone else under that employee's direct supervision.
- 4 A visual determination that all employees are clear of the circuits and equipments must be made.

For any gueries related to relays, feel free to contact ALIND.

Warning: Before working at the rear of unit, isolate all voltage and current supplies.

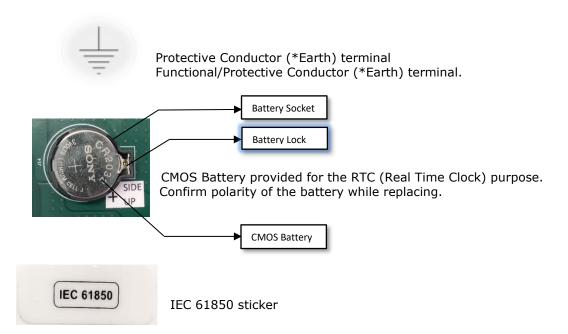
Caution: Before carrying out any work on equipment you should be familiar with the contents of the Safety Section or the Safety Guide AR** relays and the ratings on the equipment's rating label.

SYMBOLS AND LABELS USED IN THE RELAY

1. FRONT SIDE

Caution: refer to equipment documentation

Caution: risk of electric shock


Caution: Over voltage Cat.III

2. REAR SIDE

WARNING

- 1. No user serviceable components inside.
- 2. Refer servicing to authorized personnel.

WARNING

Current transformer circuit

Never allow the current transformer (CT) secondary circuit connected to this equipment to be opened while the primary system is live. Opening the CT circuit will produce a dangerous high voltage.

Exposed terminals

Do not touch the terminals of this equipment while the power is on, as the high voltage generated is dangerous.

Residual voltage

Hazardous voltage can be present in the DC circuit just after switching off the DC power supply. It takes about 30 seconds for the voltage to discharge.

CAUTION

Earth

Earth the earthing terminal of the equipment securely.

Operation conditions

Use the equipment within the range of ambient temperature, humidity and dust as detailed in the specification and in an environment free of abnormal vibration.

Ratings

Before applying AC voltage and current or DC power supply to the equipment, check that they conform to the equipment ratings.

Printed circuit board

Do not attach and remove the printed circuit board while the DC power to the equipment is on, as this may cause the equipment to malfunction.

External circuit

When connecting the output contacts of the equipment to an external circuit, carefully check the supply voltage used and prevent the connected circuit from overheating.

Connection cable

Carefully handle the connection cable without applying excessive force.

Modification

Do not modify this equipment, as this may cause the equipment to malfunction, and any such cases, warranty may be affected.

DECOMMISIONING AND DISPOSAL

De-commissioning

The supply input (auxiliary) for the equipment may include capacitors across the supply or to earth. To avoid electric shock or energy hazards, after completely isolating the supplies to the equipment, the capacitors should be safely discharged via the external terminals prior to de-commissioning.

Disposal

When disposing of this equipment, do so in a safe manner according to local regulations. It is recommended that incineration and disposal to water courses is avoided. Ensure the relay is in de energized condition and take precautions to avoid short circuits.

TECHNICAL SPECIFICATIONS FOR SAFETY

1. Protective class

IEC 60255-27:2005 Class I (This equipment requires a protective

conductor (earth) connection to ensure

user safety.

2. Environment

IEC 60255-27:2005 Pollution degree 2 (Normally only non-conductive pollution

occurs except occasionally a temporary conductivity caused by condensation is to

be expected.)

3. Overvoltage Category

IEC 60255-27:2005 Category III (The auxiliary energizing circuits of the

equipment are connected to a common battery, common mode transient voltages of a relatively high value may appear on the supply leads, and differential mode voltages may arise from switching in other circuits connected to the same battery

4. Contact data Test voltage across open contact: 1 kV DC for

1 min source.

Page 1 of 5 AR10-II

INTRODUCTION

CONTENTS

AN SERIES DESCRIPTION
PREVIOUS HISTORY OF PANTO FLASHOVER PROTECTION RELAYS
BRIEF DESCRIPTION OF AR10
MAIN FUNCTIONS
GENERAL FUNCTIONS

AN+ SERIES (ALIND NUMERICAL SERIES)

- Advanced Digital Fourier Transform based Numerical algorithm design using 32-bit Digital Signal Controller.
- Compact Construction covering several protection modules viz Over Current Protection, Earth Fault/ Restricted Earth Fault protection along with Trip Circuit supervision in single module thus saving panel space.
- Display of protection acted, fault current, fault clearing time, fault date & time of latest 200 faults at Relay LCD.
- Man-Machine Communication through 20x4 character LCD display.
- Self-supervision of both hardware and software units.
- ❖ Interface ability with SCADA through IEC 60870-5-103 & IEC 61850 communication protocol
- ❖ Facility for storing fault waveforms (Disturbance recorder) and events with date and time stamping. At a time, a total of 5000 events and 200 latest fault waveform (Disturbance recorder) will be stored in the relay.
- Graphical User Interface for Harmonic analysis, DC analysis and di/dt analysis can be done on the uploaded fault waveforms with facility for report generation.
- Facility to access/modify the relay settings both online as well as through menu in local PC
- Relay Indication (LED) reset from RCC
- IP 54 grade enclosure protection.
- SNTP (Simple Network Time Protocol) & optional GPS based IRIG -B time code standard Synchronization Facility.
- Online HV current & LV current display on relay LCD.
- Settable CT ratios.
- Relay operation Counter

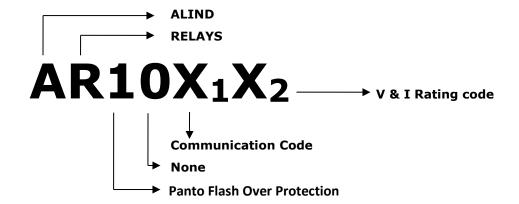
PREVIOUS HISTORY OF PANTO FLASHOVER PROTECTION RELAYS

TVG 124

Relay conforms to RDSO Spec. No. TI/SPC/PSI/PROTCT/2983 Static Type

APF 401

Numerical series relay Relay conforms to RDSO Spec. No. TI/SPC/PSI/PROTCT/2983 Disturbance & event recorder Built in counter facility


ANPF 041

The relay is the modified version of our ANPF 041 (AN Series) relay. The relay incorporates Panto Flashover protection.

Designed as per RDSO specification no. TI/SPC/PSI/PROTCT/7101 and 6072.

	Protection naming codes
0.	None
1.	Panto Flash Over Protection
2.	Distance Protection
3.	Under/Over Voltage Protection
4.	Current Unbalance Protection
5.	Over Current Protection
6.	EF/REF Protection
7.	Delta I Protection
8.	Current Differential Protection
9.	Voltage Unbalance Protection

Commi	unication naming codes- X ₁
Α	IEC 60870-5-103
В	IEC 60870-5-103 + IEC61850
	(RJ45)
С	IEC 60870-5-103 + IEC61850 (LC)
D	IEC 60870-5-103 + IEC61850
	(Redundant RJ45)
E	IEC 60870-5-103 + IEC61850
	(Redundant LC)
F	IEC 60870-5-103 + IEC61850
	(Redundant RJ45) + IRIG B
G	IEC 60870-5-103 + IEC61850
	(Redundant LC) + IRIG B
Н	IEC 60870-5-103 + IRIG B
1	IEC 60870-5-103 + IEC61850
	(RJ45) + IRIG B
J	IEC 60870-5-103 + IEC61850 (LC)
	+ IRIG B

V	& I Rating codes-X ₂
1	1A CT
2	110V AC& 1A
3	110V AC& 5A
4	230V AC& 110V DC
5	5A CT
6	100AC& 1A
7	100AC& 5A
8	100AC
9	110V AC

AR10:

The relay conforms to RDSO specification no. TI/SPC/PSI/PROTCT/6072. AR10 (AN+ Series) relay is a comprehensive Panto Flashover Protection relay for the protection of panto graph in conventional 25kV AC Traction system.

MAIN FUNCTIONS

SI No.	PARTICULARS	AR10
1.	MAIN PROTECTIONS	
1.1	Panto Flashover	✓
1.2	LBB	✓
2.	STATUS INPUTS	
2.1	BMC Status NO	✓
2.2	Coil CB1 Status	✓
2.3	Coil CB2 Status	✓
2.4	CB1 Status NO	✓
2.5	CB2 Status NO	✓
2.6	RCC Reset	✓
2.7	Time Sync	✓
2.8	Relay Enable/Disable	✓
2.9	BM 3&4 Status NO	✓
2.10	BM1&2 Status NO	✓

GENERAL FUNCTIONS

SI No.	PARTICULARS	AR10
1.	Password protection	✓
2.	Event Memory	5000
3.	Disturbance recorder waveforms	200
4.	50 cycles (45 pre and 5 post fault) of fault waveform	✓
5.	COMMUNICATION	
5.1	GUI Interface	RJ 45
5.2	Isolated RS 485 Interface	✓
5.3	Communication Protocol Interface- IEC 60870-5-103 & IEC 61850	✓
5.4	GPS Time Sync Facility through IRIG-B (optional)	✓
5.5	Date/time synchronization through PC	✓
6.	MONITORING	
6.1	PT Voltage	✓
6.3	Selectable PT ratio	✓
6.5	Counters for each element (CB1 Trip, CB2 Trip, LBB etc.)	✓
7.	USER INTERFACE	
7.1	Test facility in Relay setting Mode(offline)	✓
7.2	Compact Module	✓
7.3	Draw out type	✓

HANDLING INSTALLATIONS &CASE DIMENSIONS

CONTENTS

HANDLING OF RELAY
STORAGE
RELAY AND RACK MOUNTING
CASE DIMENSIONS

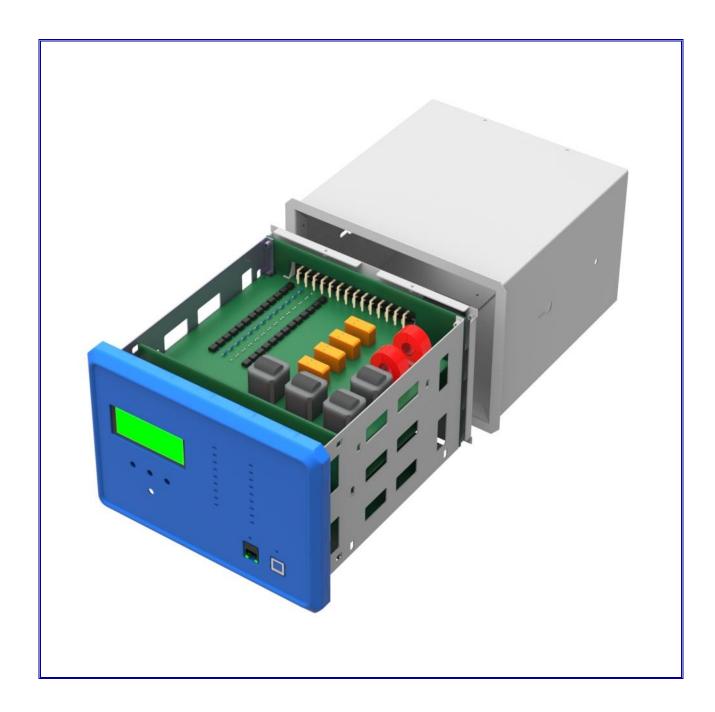
HANDLING OF RELAY

Protective relays generally of robust construction require careful treatment prior to installation on site. Care must be taken when unpacking and installing the relays so that none of the parts are damaged. Relays must be handled by skilled personnel. The following should be taken into account while handling the relay:

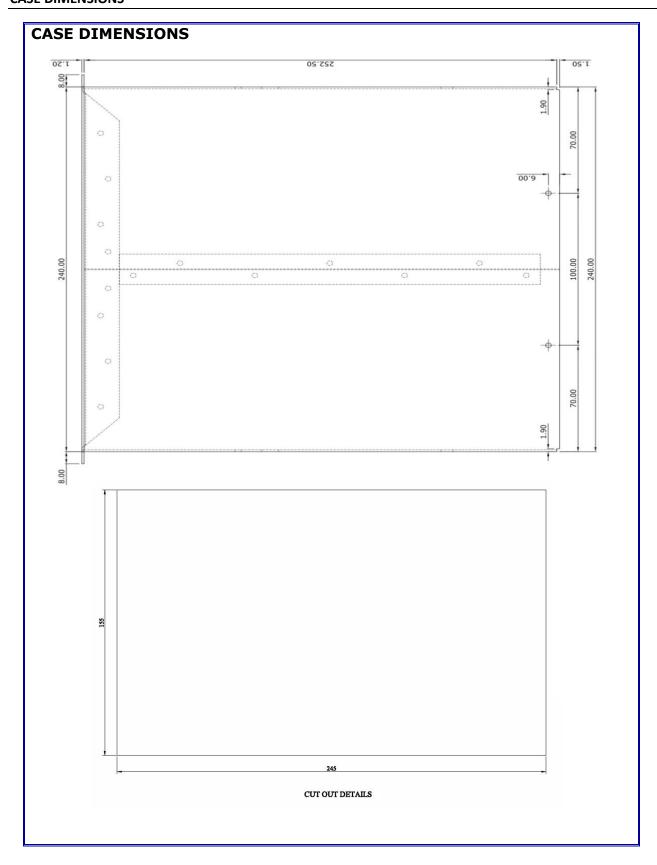
- The relay use components that are sensitive to electrostatic discharges. The relay comprises of various semi-conductor devices which can damage if touched by means of direct contact. Handle the cards in static free environment since electrostatic discharge can affect performance of the relay or cause damage to the cards.
- The electronic circuits are well protected by the metal case and the internal module should not be withdrawn unnecessarily.
- The relay is normally shipped in separately packed condition. After unpacking, see if there is any mechanical damage to the cabinet, the nameplate, terminal blocks etc. Damage of any such sort identified shall be intimated to works.
- ♣ Avoid plugging in/ pulling out the cards when the power is ON.
- Do not apply PT inputs when auxiliary supply is witched OFF.
- Keep the relays in well-packed condition in a dust-free dry environment without direct exposure to sunlight.

The relay is shipped from factory after detailed testing by our Quality Control Department. However, according to the customer requirement the relay functions can be verified before commissioning at respective sites with proper testing kits.

STORAGE


If relays are not to be installed immediately upon receipt they should be stored in a place free from dust and moisture in their original boxes; at most care should be taken while storage.

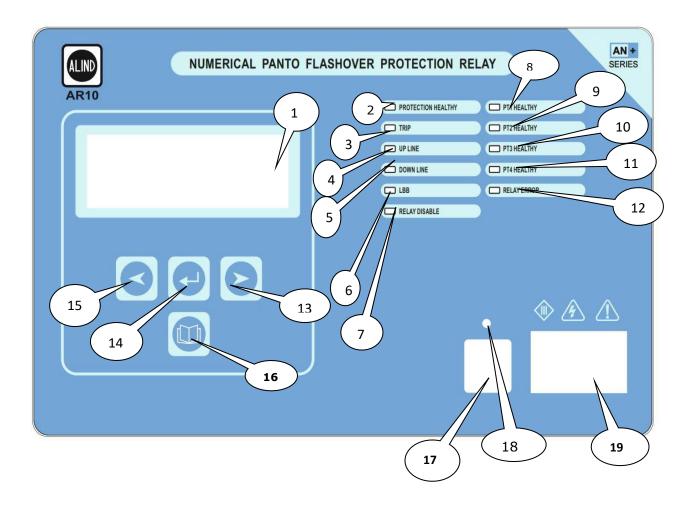
Storage temperature: -25°C to +55°C.



RELAY AND RACK MOUNTING

Page 1 of 22 AR10-IV

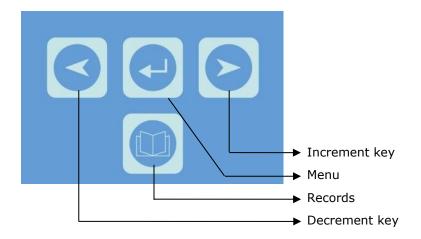
USER GUIDE


CONTENTS

FRONT PANEL INDICATIONS
INTERNAL ARCHITECTURE AND BLOCK DIAGRAM
ENERGIZING THE RELAY
PCB DESCRIPTION
RELAY SETTINGS AND ALGORITHM

FRONT PANEL INDICATIONS

No	Legend
1.	LCD DISPLAY
2.	PROTECTION HEALTHY (Green/Amber)
3.	TRIP (RED)
4.	UPLINE (Red)
5.	DOWN LINE (Red)
6.	LBB (RED)
7.	RELAY DISABLE (RED)
8.	PT1 HEALTHY (Red)
9.	PT2 HEALTHY (Red)
10.	PT3 HEALTHY (Red)
11.	PT4 HEALTHY (Red)
12.	RELAY ERROR (Red)
13.	>
14.	4
15.	<
16.	Records
17.	RJ45 PORT
18.	H.RST
19.	Name Plate



LCD DISPLAY

A 20 \times 4 LCD display is provided for easy viewing of parameters, relay settings, fault event records, date& time, error counter etc. The display backlit can be made ON by pressing any push button key and the display backlit ON time is settable.

Navigation Keys

The relay is provided with four switches.

Menu key

- Main key for entering relay setting mode.
- * If you want to select anything in the setting mode, we can use this key.
- * To reset the relay from tripping mode.

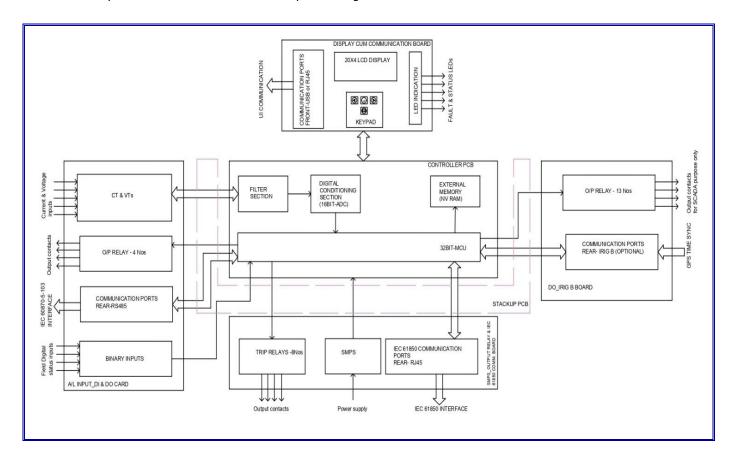
Increment key

- * If you want to raise any particular setting, we can use this option.
- * For saving any particular changes in the relay, you can hire this key.
- * For viewing new options in the relay, we can use this key.

Decrement key

- * If you want to lower any particular setting, we can use this option.
- * No need to save any unwanted mistakes in the relay you can use this key.
- * If you want to verify any previous settings in the relay, you can opt this key.

Records key


* If you want to check the logs and data stored in the relay memory, you can use this key.

INTERNAL SYSTEM LEVEL ARCHITECTURE

The internal system level architecture of relay including card to card architecture in brief is shown below.

1. DSP Controller

The 32bit MCU (Digital Signal Controller) machine that combines the control advantages of a high-performance 32-bit microcontroller with the high computation speed of a fully implemented Digital Signal Processor (DSP).

The MCU controller continuously monitors the currents. Based on this the controller performs different calculations and whenever an abnormal condition occurs it distinguishes the type of fault and issues trip command to the circuit breaker.

2. Data Acquisition

The Current signals are scaled and isolated using Current Transformer (CT). These isolated analog signals are filtered to minimize the effects of electromagnetic interference and noise in the high frequency range.

The analog signals are then fed to the Analog to Digital Converter which has a 16 bit resolution. The DSP controller will take the 32 samples per cycles of Current for the computational purpose. If any fault occurs the parameters will be stored in to the non-volatile memory with date and time stampings and this can be downloaded for further analysis in the disturbance recorder.

3. Power Supply Module

This module gives the necessary regulated voltages like +5V, -5V, and +24V to various cards in the module. The normal operating voltage range is 45 VDC to 170 VDC. The +24V is used for driving the output relays in the I/O card and O/P relay card. The +5V and -5V is supplied to the processor, I/O card and Display PCB for normal relay operations. The isolated +5V is dedicated to the communication ports of the relay.

4. Communication Module

The relay is having three communications port, Front port: RJ45, Rear port: ETHERNET & RS485.The relay is using IEC 60870-5-103 & IEC 61850-communication protocol for communication through RS485 & ETHERNET.

Front Port:

1) Communication Port

RJ 45 port shall be provided for uploading/downloading relay settings and events.

Rear Port:

a) RS 485 Communication Port

RS 485 port shall be provided for SCADA connectivity. Using RS485 port fault online data of critical parameters, disturbance record, and event record (Trip data) etc shall be downloaded. The communication protocol shall comply to IEC 60870-5-103 protocol.

b) Ethernet Communication Port

Ethernet port shall be provided for IEC 61850 connectivity. Using Ethernet port fault online data of critical parameters, disturbance record, event record (Trip data) etc. shall be downloaded. SNTP time synchronization is possible through the same. Ethernet port can either be copper/fiber depending upon the tender requirement.

5. Man Machine Interface

Man Machine Interface is through a 20x4 LCD display and keys in the front panel of the relay. Necessary LEDs are provided in front panel for indicating the operation of different element.

6. Disturbance Recorder

The relay has the facility to record 50 cycles (45 pre-fault and 5 post faults) of fault waveforms. Latest 200 waveforms of Current can be stored in the relay. This data is retrievable through front and rear communication ports using UI software and SCADA respectively.

7. Event Recorder & Disturbance Recorder

The relay is capable of storing 5000 number of events with date and time stamping of 1ms accuracy. The event data comprise of:

Tripping of different protection elements (I, Fault clearing time, Fault date & time)

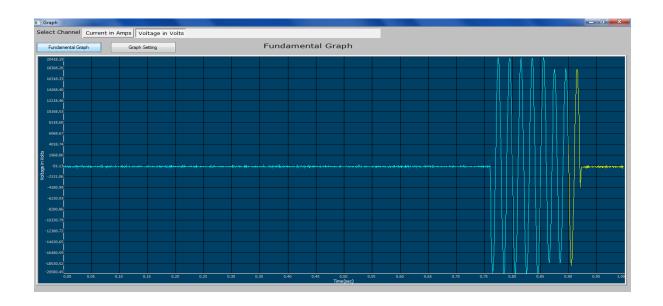
Trip circuit supervision

Relay pick up

Relay reset

CB Trip

CB Close


Change of status input

Relay setting changed (GUI & Keypad)

Relay Error.

ENERGIZING THE RELAY

- 1. Before turning ON the relay, proper earthing should be provided.
- 2. Visual Inspection for any physical damage in housing, display etc. shall be checked.
- 3. Operating voltage range: 45 to 170 VDC. Rated Operating voltage: 110 V DC.
- 4. Prefer regulated power supply of 110VDC.
- 5. Auxiliary power supply shall be provided to the corresponding terminals with the help of an MCB.
- 6. Switch on the power supply. Measure the voltage between the corresponding terminals and ensure that the voltage is within the normal operating range.
- 7. After the relay is powered ON, the following shall be noticed.

Protection healthy LED glow green in color which indicates that the relay is functioning OK, otherwise it goes amber.

PCB DESCRIPTION

The relay comprises of the following hardware.

Main PCBs. –Display PCB, Controller PCB, Stack PCB, status & CT, PT PCB, SMPS & trip relay PCB, Tele Annu PCB, Back panel PCB

Display cum Communication PCB (640 261): The Display PCB is mounted at the front plate of the unit. It consists of the 20x4 LCD, LED indications, Keyboard circuits, LED controller and front RJ 45 communication port.

Controller PCB (640 262): The Controller PCB is mount on the backside of the Display PCB. This PCB consists of major components such as DSP controllers, ADC and its filter circuits, Memory ICs, RTC etc. The Analog signal get filtered and digitized in this board. The DSP takes decision based on this digital samples and initiates necessary commands.

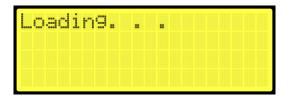
Stack PCB (640 263): Internal communications between the PCB's are ensured with the help of stack PCB.

Status & CT,PT PCB (640 264): All the CTs, PTs and Input status lines are assembled in this board. IEC 60870-5-103 communication port also provided in this PCB.

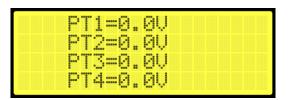
SMPS & Trip Relay PCB (640 265): The SMPS PCB provides the necessary Power supply voltages to the different PCBs mounted inside the relay. The SMPS provides +24V, +5V, -5V and isolated +5 V. The +24 V supply is used for the driving the output relays. The +5V and -5V is supplied to the controller PCB, Display PCB, and I/O PCB for normal operations. The isolated +5V is dedicated to the communications ports of the relay.

This board (trip relay PCB) will give necessary trip commands to the master trip relay or breaker, which is installed in the yard. Necessary relay initiating signals are wired to these output relays from the Controller Board.

Tele Annu PCB (640 266): All the Telesignalling output circuits are assembled in this PCB. IRIG B circuit also provided in this PCB.


Back Panel PCB (640 267): This PCB consists of terminal blocks for external interface with the site and power connectors, which connects SMPS, I/O and CT PT PCB's. The RS 485 port is also mounted in this PCB. The terminal block (TB-A) is having CT shorting facility. Since the rack with Terminal Blocks is having the CT shorting facility, the relay can be withdrawn.

RELAY ONLINE DISPLAY PARAMETERS


After Power ON, the relay boot screen shows

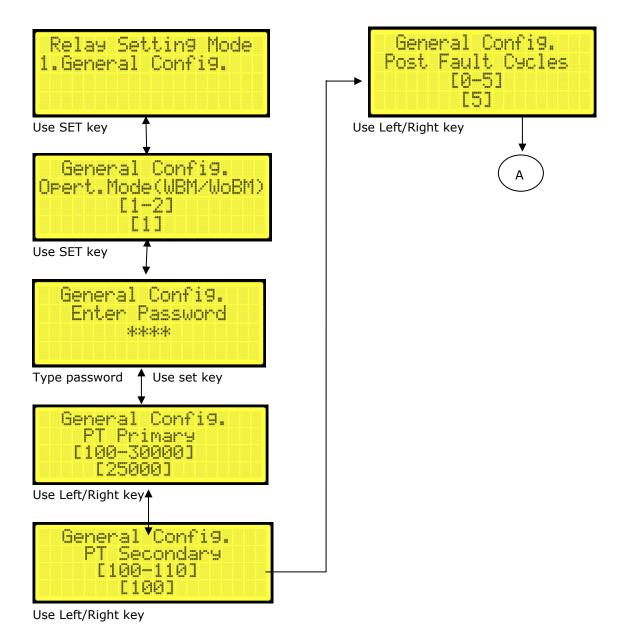
Then comes the online parameter display

Window:

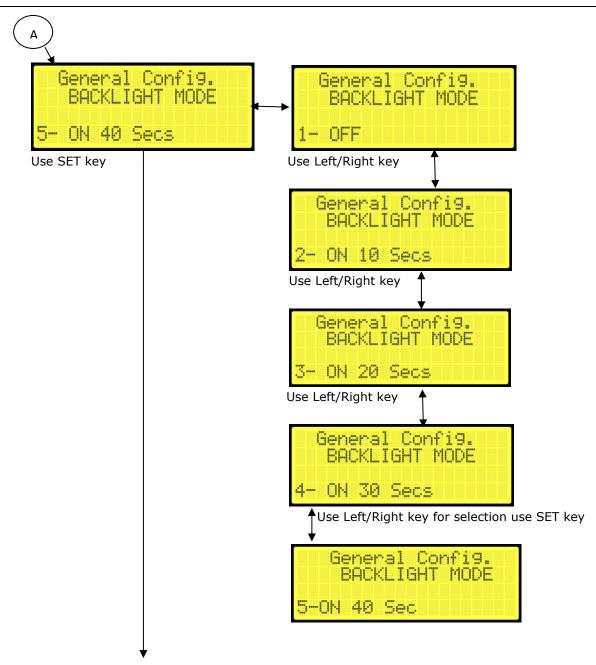
Setting Mode

Relay will enter to setting mode.

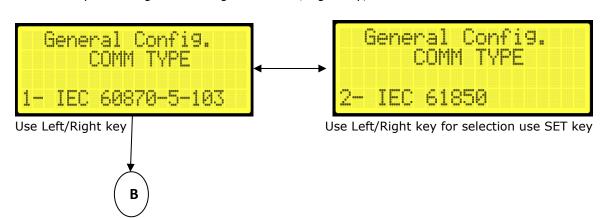
Enter the password and press ← key. The default password setting is '1000'

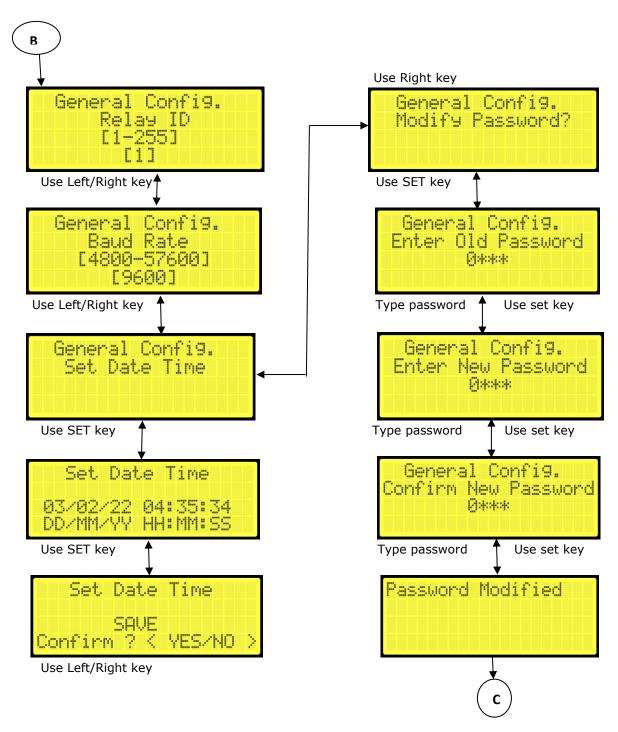

To change settings:

- a) Press \leftarrow to change the settings.
- b) Press **Right** key to increment
- c) Press **Left** key to decrement
- d) Press ← to accept change.
- e) To coming back to main **MENU** while operating, press **Left** and **Right** key simultaneously.
- f) Repeat the process for all settings
- g) After completing the settings, the relay shows the message **`SETTINGS UPDATED'** and returns to the operating mode.

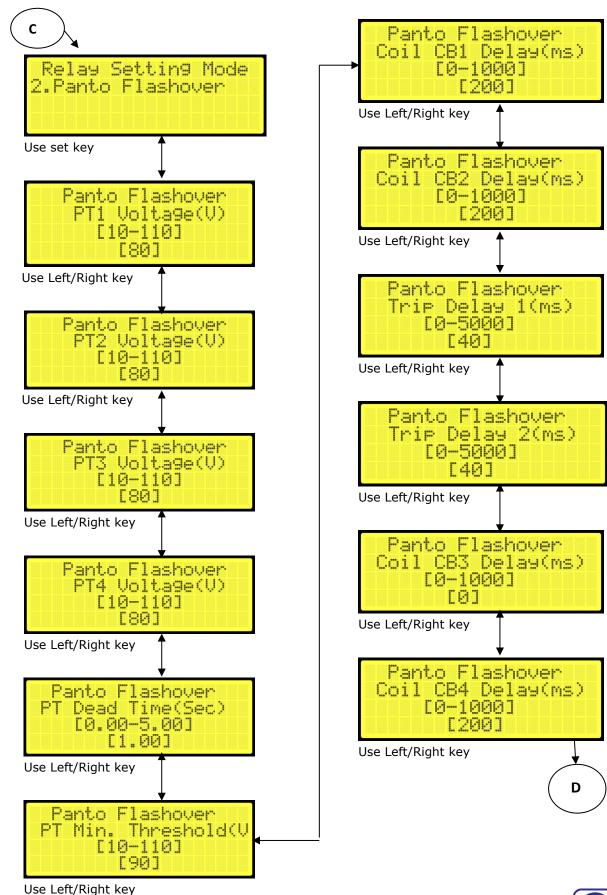


Relay Settings Algorithm

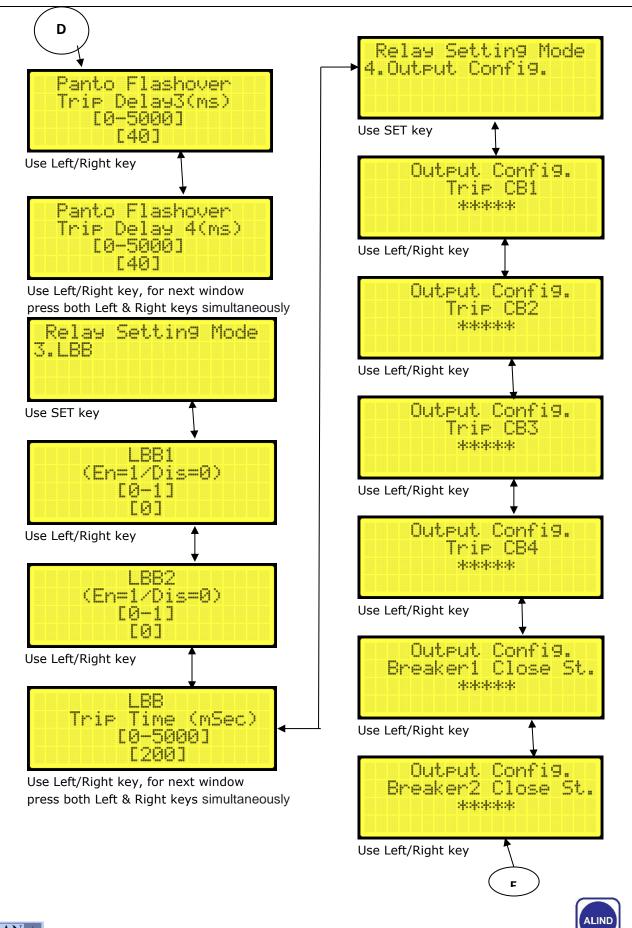


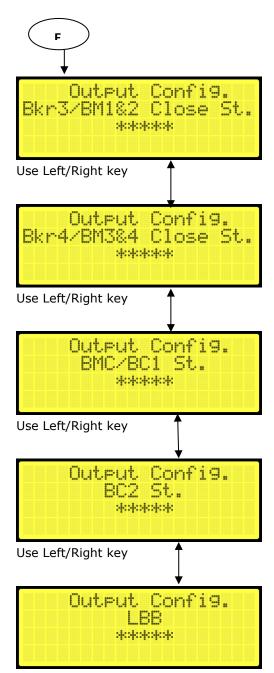

Use SET key for change the settings & Use Left/Right key, then use SET

key.

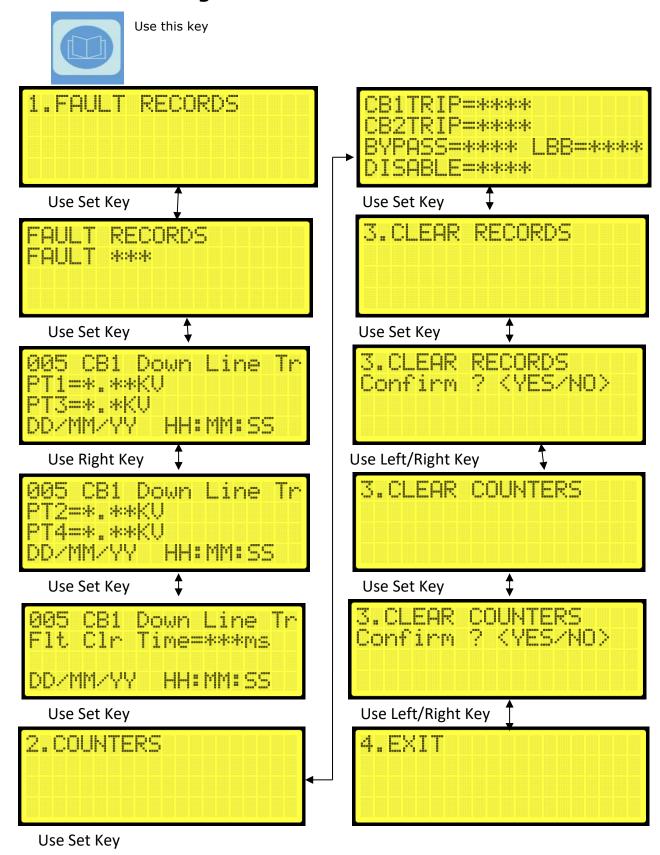


Use Left/Right key, for next window press both Left & Right keys simultaneously

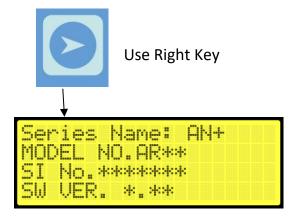


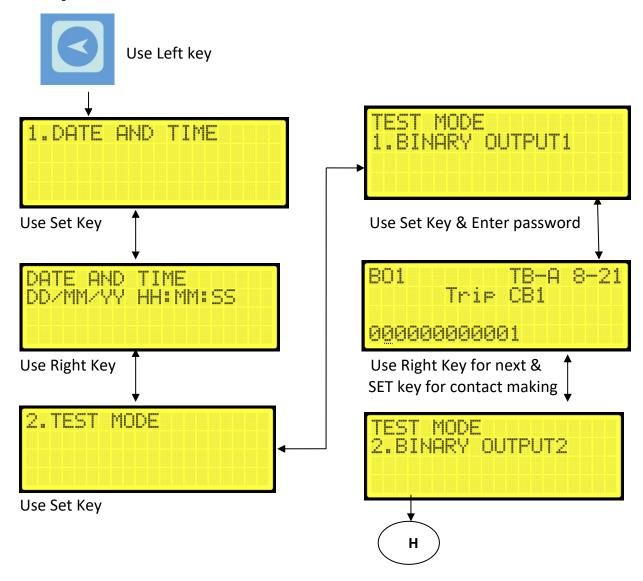


RELAYS DIVISION

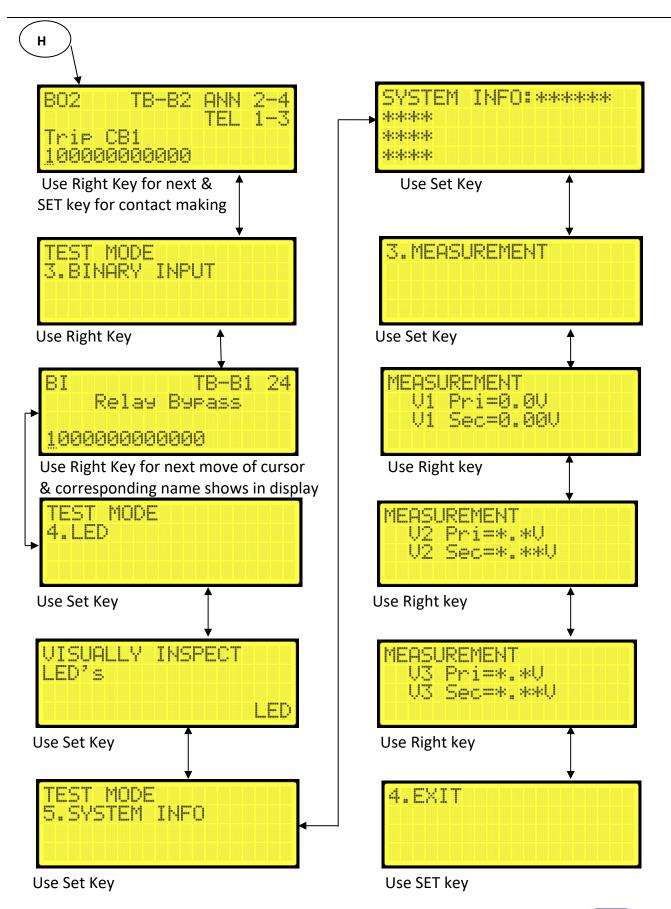


Use Left/Right key

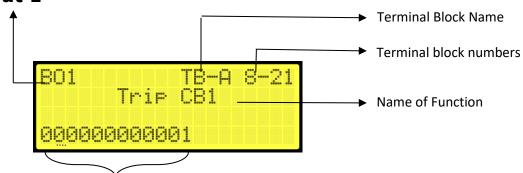

To access & clear logs



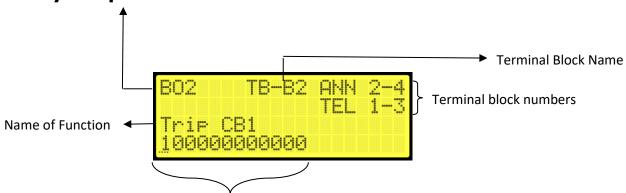
To view device Info.



For Relay healthiness check & I/O Verification

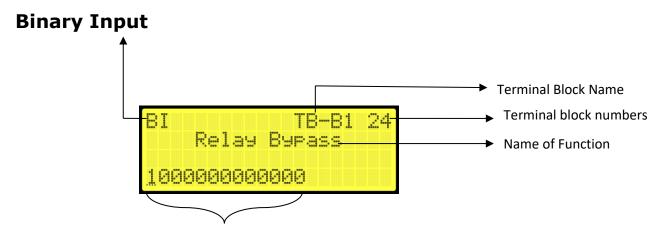

Binary Output & Input Details

	Binary Ou	tput 1		Binary	Output 2		Binary Inpu	it
BO1	NAME	TB NUMBER	во2	NAME	TB NUMBER	ВІ	NAME	TB NUMBER
1	NIL		1	Trip CB1	TB B2 - 1 & 3,2 & 4	1	Relay Bypass	TB B1 - 24
2	Trip CB1	TB A - 8 & 21	2	Trip CB2	TB B2 - 1 & 5 , 2 & 6	2	BM 3,4/CB4 Close	TB B1 - 21
3	Trip CB2	TB A- 9 & 20	3	Trip CB3	TB B2 - 1 & 7, 2 & 8	3	BM 1,2/CB3 Close	TB B1 - 22
4	Trip CB3	TB A- 10 & 19	4	Trip CB4	TB B2 - 1 & 9 , 2 & 10	4	CB2 Close	TB B1 - 19
5	Trip CB4	TB A- 11 & 18	5	PT-1 Dead	TB B2 - 1 & 11 , 2 & 12	5	CB1 Close	TB B1 - 20
6	ARB 1	TB A- 12 & 17	6	PT-2 Dead	TB B2 - 1 & 13 , 2 & 14	6	RCC Reset	TB B1 - 17
7	ARB 2	TB A- 13 & 16	7	PT-3 Dead	TB B2 - 1 & 15 , 2 & 16	7	CB1 Switch Close	TB B1 - 18
8	LBB 1	TB A- 14 & 15	8	PT-4 Dead	TB B2 - 1 & 17 , 2 & 18	8	BC-1 Close	TB B1 - 15
9	SPARE 1	TB B1 - 3 & 4	9	LBB	TB B2- 1 & 19 , 2 & 20	9	CB2 Switch Close	TB B1 - 16
10	SPARE 2	TB B1 - 5 &	10	NIL		10	BC-2 Close	TB B1 - 13
11	LBB 2	TB B1 - 7 & 8	11	Relay Bypass	TB B2 - 1 & 23 , 2 & 24	11	CB3 Switch Close	TB B1 - 14
12	Relay Error	TB B1 - 1 & 2	12	Relay Disable	TB B2 - 1 & 25 , 2 & 26	12	CB4 Switch Close	TB B1 - 12
						13	NIL	



Binary Output Contacts. Use Left</>Right key for selecting previous or next contact & moving cursor also change the corresponding name in display. For make & reset contact use SET (←) key.

Binary Output 2


Binary Output Contacts. Use left</>Right key for selecting previous or next contact & moving cursor also change the corresponding name in display. For make & reset contact use SET

NOTE: TB B2 – 1 TELE COMMON (+110Vdc)

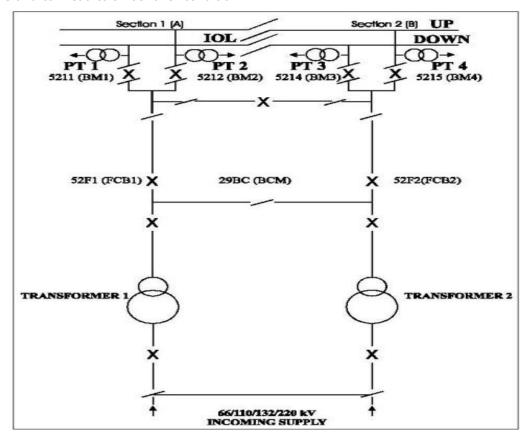
TB B2 – 2 ANNU COMMON(+ve common from annunciator)

Use left</>Right key for selecting previous or next contact & moving cursor also change the corresponding name in display. When 110 DC (-ve) permanently supplied to the TB-B1-23 as status common and 110 DC (+ve) is given to the status pulse corresponding TB numbers in TB-B1.

TECHNICAL DATA & CHARACTERISTIC CURVES

CONTENTS

DESCRIPTION OF PROTECTION FUNCTIONS		5.1
TECHNICAL SPECIFICATIONS		 5.2
GENERAL SETTINGS	5.3	_
TB DETAILS	5.4	_
RELAY CONFORMING STANDARDS		5.5



5.1 DESCRIPTION OF PROTECTION FUNCTIONS

Panto flash over protection relay should be included in the protection scheme for a traction network wherever insulated overlaps (IOL) are involved. Whenever there is a tripping of circuit breaker due to intermittent fault on one of the sides of IOL, and an electric train enters from live section to dead section of the IOL, there shall be heavy flash over when the panto graph leaves IOL. Depending upon the intensity of current being drawn by the panto at that point of time, the extent of damage would be severe and the OHE may even get parted.

The panto flashover relay ANPF 041 is designed to identify such fault conditions and shall originate trip signals to both the CBs controlling either sides of the IOL and thereby eliminating the possibility of heavy flashover.

Please refer to fig.1, the power supply diagram of a typical traction substation. One side of the insulated overlap can become dead, while the other section is live, under any of the following conditions and can lead to a flashover condition.

- 1) Manual tripping of any of the feeder breakers
- 2) Feeder breaker tripped on transient fault and dead time of the auto reclose relay in Progress ie, the feeder breaker is awaiting reclose command from auto reclose relay.

3) The feeder breaker receives trip command immediately after a reclosure, due to an intermittent fault, and the auto reclose scheme goes to lockout without releasing further reclose commands, until the auto reclose relay is reset manually. (fig1.)

All the above conditions can take place either during normal feed condition or during feed extension from adjacent substation. The indication type PTs PT I to PT IV, 27 kV/100 V, on either side of the overlap indicates OHE healthiness status continuously.

The relay is made to continuously monitor the status of

- 1. Output of all the four PTs.
- 2. Feeder breakers FCB1 (52F1) and FCB2 (52F2)
- 3. Bridging interruptor BMC1 (52I3)
- 4. Line interruptors BM1, BM2, BM3, BM4

Working condition

Pı	reliminary	y conditio	n for the e	vent		PT S	Status		FEED	DECLUIT.
FCB1	FCB2	BMC1	BM1&2	BM3&4	PT1	PT2	PT3	PT 4	CONDITION	RESULT
0	0	*	*	*	*	*	*	*	Extended	RELAY HEALTHY
*	*	1	*	*	*	*	*	*	Extended	RELAY DISABLE
*	*	*	0	*	*	*	*	*	Extended	RELAY DISABLE
*	*	*	*	0	*	*	*	*	Extended	RELAY DISABLE
1	1	*	*	*	*	*	*	*	Extended	RELAY HEALTHY
0	1	0	1	1	0	0	0	0	normal	RELAY HEALTHY
0	1	0	1	1	0	0	0	1	normal	RELAY HEALTHY
0	1	0	1	1	0	0	1	0	normal	RELAY HEALTHY
0	1	0	1	1	0	0	1	1	normal	RELAY HEALTHY
0	1	0	1	1	0	1	0	0	normal	RELAY HEALTHY
										UP LINE TRIP (CB2
0	1	0	1	1	0	1	0	1	normal	TRIP)
0	1	0	1	1	0	1	1	0	normal	RELAY HEALTHY
										UP LINE TRIP (CB2
0	1	0	1	1	0	1	1	1	normal	TRIP)
0	1	0	1	1	1	0	0	0	normal	RELAY HEALTHY
0	1	0	1	1	1	0	0	1	normal	RELAY HEALTHY
										DN LINE TRIP (CB2
0	1	0	1	1	1	0	1	0	normal	TRIP)
										DN LINE TRIP (CB2
0	1	0	1	1	1	0	1	1	normal	TRIP)
0	1	0	1	1	1	1	0	0	normal	RELAY HEALTHY
										UP LINE TRIP (CB2
0	1	0	1	1	1	1	0	1	normal	TRIP)
										DN LINE TRIP (CB2
0	1	0	1	1	1	1	1	0	normal	TRIP)
										UP LINE & DN LINE
0	1	0	1	1	1	1	1	1	normal	TRIP (CB2 TRIP)
1	0	0	1	1	0	0	0	0	normal	RELAY HEALTHY
1	0	0	1	1	0	0	0	1	normal	RELAY HEALTHY
1	0	0	1	1	0	0	1	0	normal	RELAY HEALTHY

										1
1	0	0	1	1	0	0	1	1	normal	RELAY HEALTHY
1	0	0	1	1	0	1	0	0	normal	RELAY HEALTHY
										UP LINE TRIP (CB1
1	0	0	1	1	0	1	0	1	normal	TRIP)
1	0	0	1	1	0	1	1	0	normal	RELAY HEALTHY
										UP LINE TRIP (CB1
1	0	0	1	1	0	1	1	1	normal	TRIP)
1	0	0	1	1	1	0	0	0	normal	RELAY HEALTHY
1	0	0	1	1	1	0	0	1	normal	RELAY HEALTHY
										DN LINE TRIP (CB1
1	0	0	1	1	1	0	1	0	normal	TRIP)
										DN LINE TRIP (CB1
1	0	0	1	1	1	0	1	1	normal	TRIP)
1	0	0	1	1	1	1	0	0	normal	RELAY HEALTHY
										UP LINE TRIP (CB1
1	0	0	1	1	1	1	0	1	normal	TRIP)
										DN LINE TRIP (CB1
1	0	0	1	1	1	1	1	0	normal	TRIP)
										UP LINE & DN LINE
1	0	0	1	1	1	1	1	1	normal	TRIP (CB1 TRIP)

Note:

- 1. 0 OFF condition, 1- ON condition
- 2. * don't care condition

Normal Feed Condition

Ref *fig1*. During normal feed condition for up and down lines on both sides of the overlap, the status of breakers and interrupters shall be as follows.

TFR1 & TFR2 - Either or both the transformers shall be .ON.

29 BC (BCM) - Normally closed.

FCB1 & FCB2 - Normally closed.

BM1 & BM2 - Normally closed.

BM3 & BM4 - Normally closed.

BMC1 (52I3) - Normally open.

Under the above normal feed conditions, the possible feed paths for UP and DN catenary wires from the TSS shall be as follows.

- a) FCB1 (52F1) BM1 DN (A)
- b) FCB1 (52F1) BM2 UP (A)
- c) FCB2 (52F2) BM3 DN (B)
- d) FCB2 (52F2) BM4 UP (B)

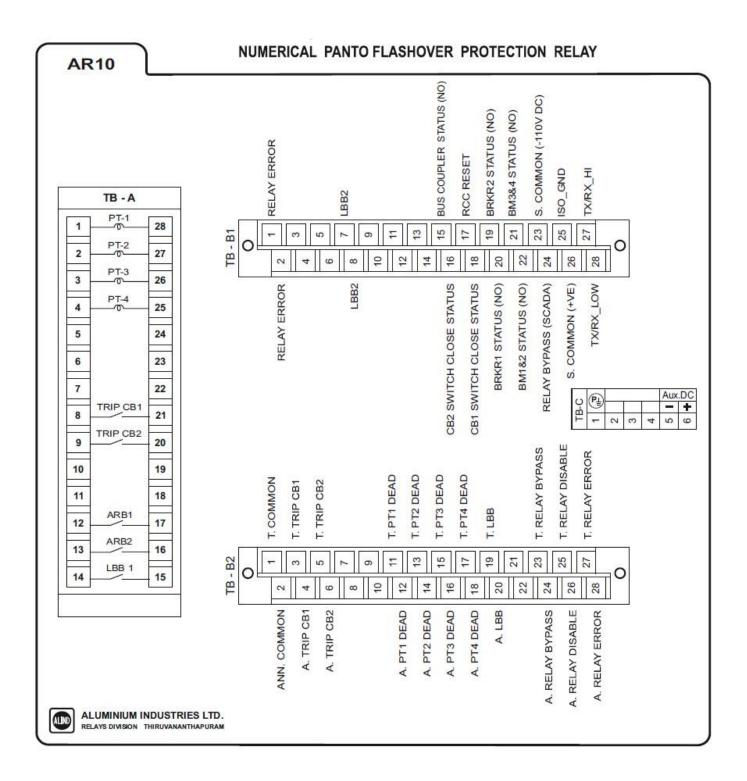
In case any side of the overlap is dead, due to any of the feeder breakers being tripped, the PT output at that side gets dipped considerably. If PT delivers normal output on dead line, that can only be due to extension of live line by panto crossing. The relay senses this as an abnormal condition and releases the trip command to feeder breakers, simultaneously disabling auto reclose scheme to prevent auto reclosing of this dead line, until the panto leaves the overlap.

Extended feed condition

Under the extended feed condition, i.e. in case the feed is extended to the failed TSS, the relay shall be disabled. This shall be recognised by the relay from the status of the feeder interrupters BM1, BM2, BM3, BM4 and the coupling interruptor BMC1 (52I3). Necessary potential free aux. contacts of feeder breakers and interruptors are wired to the relay for this purpose. Alternatively if feed is extended to both the sides of the overlap by closing the bridging interruptor BMC1 (52I3) the relay shall again be disabled. Such a condition can be recognised by the relay from the status of coupling interruptor BMC1 (52I3). If relay is disabled the relay will indicate RELAY DISABLE.

TECHNICAL SPECIFICATIONS

SI.No	Specification	REF.	Particulars
1.	Auxiliary Supply	V _{DC}	35 to 260VDC
2.	Voltage Input	V	100V AC
	(rated)	•	
3.	Frequency	Fn	50 Hz
4.	VA Burden on PT		Less than 0.5 VA
5.	VA burden on Aux		Less than 15 Watts (for energized
			condition) Less than 10 Watts (for De-
			energized condition)
6.	Operating Temp Range		-25°C to +55°C
7.	Max. & Minimum relative	е	5% to 95%
	humidity		
8.	Contact details		
	a) Current carrying capacit	У	Continuously ≥ 5 Amps at 110 V DC
			Short time ≥30 Amps for 200 ms at
			110 V DC
	b) Making capacity at 110\	/ DC	≥ 1000 W at L/R = 40ms
	c)Breaking Capacity		≥ 30 W at L/R = 40ms
	at 110V DC		
9.	Type of communication	ports	RJ45 (front) and
			RS 485& RJ45/Fiber (Rear)
10.	Overall dimensions		
	Width		263 mm
	Height		173 mm
	Depth		300 mm
11.	Weight		5.6 kg approx.


5.3 RELAY SETTINGS

Settings	Particulars
Password protection (YES/NO)	0000-9999
1. General Config.	
PT Primary	100-30000V in steps of 10V
PT Secondary	100/110V
Post fault cycles	0-5 in steps of 1
Back light time	0 - OFF 1 - 10S 2 - 20S 3 - 30S 4 - 40S
Communication Type	1 - IEC 60870-5-103 2 - IEC 61850
Relay ID	1-255
Baud Rate	4800-57600 in steps of 200
Set Date & Time	DD MM YYYY HH:MM:SS
Modify Password	
2. Panto Flashover	
PT1 Voltage	10-110V in steps of 1V
PT2 Voltage	10-110V in steps of 1V
PT3 Voltage	10-110V in steps of 1V
PT4 Voltage	10-110V in steps of 1V
PT Dead Time (Sec)	0.00-5.00 Sec in steps of 0.1Sec
PT Min. Threshold (V)	10-110V in steps of 1V
Add. Delay CB1	0-1000ms in steps of 10ms
Add. Delay CB2	0-1000ms in steps of 10ms
Coil CB1	0-5000ms in steps of 1ms
Coil CB2	0-5000ms in steps of 1ms
3. LBB	
LBB1	EN/DIS
LBB2	EN/DIS
Trip Time	0-5000ms in steps of 1ms
Operating Time	
Panto Flashover Protection	Less than 40mSec.

5.4 TB DETAILS

RELAY CONFORMING STANDARDS

The relay conforms to the following standards:

SI No.	Standards	Description
I.	IEC 60255-151	FUNCTIONAL REQUIREMENTS FOR OVER/UNDER CURRENT PROTECTION.
II.	IEC 60255-5	INSULATION COORDINATION OF MEASURING RELAYS AND PROTECTION EQUIPMENT- REQUIREMENTS AND TESTS.
III.	IEC 60255-1	MEASURING RELAYS AND PROTECTION EQUIPMENT- COMMON REQUIREMENTS.
IV.	IEC 60255-21-1	VIBRATION TESTS (SINUSOIDAL)
V.	IEC 60255-21-2	SHOCK AND BUMP TESTS
VI.	IEC 60255-21-3	SEISMIC TESTS
VII.	IEC 60255-27	PRODUCT SAFETY REQUIREMENT.
VIII.	IEC 60255-26	ELECTROMAGNETIC COMPATIBILITY REQUIREMENT.
IX.	IEC 60529	DEGREES OF PROTECTION PROVIDED BY ENCLOSURES (IP CODE)
X.	IEC 61810-2	RELIABILITY.
XI.	IS 2705 (PART II, III&IV)	PROTECTIVE CURRENT TRANSFORMERS.
XII.	IS 3231 (PART 1 TO 3)	ELECTRICAL RELAYS FOR POWER SYSTEM PROTECTION.
XIII.	IS 8686	STATIC PROTECTIVE RELAYS.
XIV.	IEC 60068-2	ENVIRONMENTAL TESTS.
XV.	IEC 60870-5-103	COMMUNICATION PROTOCOL
XVI.	IEC 61850	COMMUNICATION PROTOCOL

TROUBLE SHOOTING

Under normal working conditions, the 'PROTECTION HEALTHY LED' provided in the front panel of the relay glows green. The same LED turns amber to recognize any fault inside the relay itself.

Following are certain guidelines for the relay to identify the nature of fault and necessary checking procedures to be adopted at site so that relay can be rectified suitably.

SI. No.	Faults	Checks	Causes
1	No power ON Indication or No display.	 Check the auxiliary DC supply to the relay rear terminals Check the continuity of the output terminal, after disconnecting the wires. 	Due to power supply failure, the LED turns off. The varistor may short circuited to protect internal circuitry on transients
2	Current Not reading/ Out of tolerance limit.	 Refer TB sticker for CT inputs. Check for the earthing of CT. Check if the terminals of TB-A is connected properly or for any lose contact. Check CT ratio and multiplying factor if any. Check the continuity of the output terminal, after disconnecting the wires. After checking of the above, measure the current using calibrated Clamp-On meter. If not OK, intimate to works. 	1. The CT connector is having shorting facility. If the connector is not tight, CT secondary may get some low resistance path through the connector itself. 2. If CT is not properly earthed, there is a chance of leakage current that may cause error in CT reading.
4	Relay Error Indication	 Intimate to works. Press H.RST key in the relay front panel. 	 Supply variation to internal PCB's. DC supply fail.

SCADA COMMUNICATION INTERFACE AS PER IEC 60870-5-103 PROTOCOL

MODEL - AR 10

RELAY DESIGNED AS PER RDSO SPECIFICATION NO. TI/SPC/PSI/PROTCT/7101

ALUMINIUM INDUSTRIES LIMITED RELAYS DIVISION

Version 1.1

Date 21/02/2024

OVERVIEW

IEC 60870-5-103 is a standard for power system control and associated communications. It defines a companion standard that enables interoperability between protection equipment and devices of a control system in a substation. The device complying with this standard can send the information using two methods for data transfer - either using the explicitly specified application service data units (ASDU) or using generic services for transmission of all the possible information.

The IEC 60870-5 protocol is based on the three-layer reference model 'Enhanced Performance Architecture' (EPA), as specified in clause 4 of IEC 60870-5-3. The physical layer copper-wire based system that provides binary symmetric and memoryless transmission.

The link layer consists of a number of link transmission procedures, using explicit Link Protocol Control Information (LPCI), that are capable of carrying Application Service Data Units (ASDUs) as link user data. The link layer uses a selection of frame formats to provide the required integrity, efficiency, and convenience of transmission.

The application layer contains a number of application functions that involve the transmission of Application Service Data Units (ASDUs) between source and destination.

The application layer of this companion standard does not use explicit Application Protocol Control Information (APCI). This is implicit in the contents of the ASDU Data Unit Identifier and in the type of link service used.

PHYSICAL LAYER

Connection is possible with IEC 60870-5-103 via rear RS485 port of relay as seen in figure 1 below.

- 1. TX/RX_HI correspond to Data +ve.
- 2. TX/RX_LOW correspond to Data -ve.
- 3. ISO_GND correspond to GND.

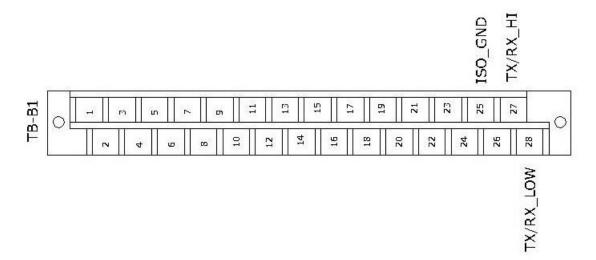


Figure 1

GENERAL INFORMATION

Relay ID: Settable from 1 to 255 via relay HMI.

Baud Rate: Settable from 4800 - 57600 via relay HMI.

No. of data bits: 8 No of stop bits: 1 Parity: None

Measurand Scaling Factor: 2.4

PROTOCOL MAPPING

INFORMATION NUMBER: INF

ASDU TYPE: TYP

CAUSE OF TRANSMISSION: COT

FUNCTION NUMBER: FUN

GENERAL INTERROGATION: GI, marked with 'X' wherever applicable.

COM: Indicates whether relay generated event on rising edge only (0 - 1) indicated by \uparrow or

both rising and falling edge (0-1 and 1-0) indicated by $\uparrow \downarrow$.

SYSTEM FUNCTIONS IN MONITOR DIRECTIONS

DESCRIPTION	GI	ASDU TYPE	FUN	INF	СОТ	COM
End of general interrogation	-	8	255	0	10	GLB
Time synchronization	-	6	255	0	8	GLB
Reset FCB	-	5	124	2	3	According to main FUN
Reset CU	-	5	124	3	4	According to main FUN
Reset CU/Start/Restart	-	5	124	4	5	According to main FUN

STATUS INDICATIONS IN MONITOR DIRECTION

DESCRIPTION	GI	ASDU TYPE	FUN	INF	СОТ	COM
Protection Healthy/Active	-	1	124	18	1	$\uparrow \downarrow$
RCC Reset	-	1	124	19	1	↑
Local Parameter Settings (Change)	-	1	124	22	1	↑
Catenary PT-1 dead	X	1	124	130	1,9	$\uparrow \downarrow$
Catenary PT-2 dead	X	1	124	131	1,9	$\uparrow \downarrow$
Catenary PT-3 dead	X	1	124	132	1,9	$\uparrow \downarrow$
Catenary PT-4 dead	X	1	124	133	1,9	$\uparrow \downarrow$
CB 1 close status	X	1	124	111	1,9	$\uparrow \downarrow$
CB 2 close status	X	1	124	112	1,9	$\uparrow \downarrow$
BMC1 status	X	1	124	115	1,9	$\uparrow \downarrow$
*BMC2 status	X	1	124	116	1,9	$\uparrow\downarrow$
*CB 3 / BM 1&2 status	X	1	124	27	1,9	$\uparrow\downarrow$

*CB 4 / BM 3&4 status	X	1	124	28	1,9	$\uparrow \downarrow$
Coil CB1 status	-	1	124	113	1	$\uparrow \downarrow$
Coil CB2 status	-	1	124	114	1	$\uparrow \downarrow$
*Coil CB3 status	-	1	124	119	1	$\uparrow \downarrow$
*Coil CB4 status	-	1	124	120	1	$\uparrow \downarrow$
Relay Error	-	1	124	40	1	↑

^{*} Applicable only for Without BM (WoBM) mode of operation

SUPERVISION INDICATIONS IN MONITOR DIRECTION

DESCRIPTION	GI	ASDU TYPE	FUN	INF	СОТ	СОМ
Relay Bypass Enable/Disable	X	1	124	24	1,9	$\uparrow\downarrow$
Relay Disable	X	1	124	25	1,9	$\uparrow\downarrow$

FAULT INDICATION IN (MONITOR DIRECTIONS)

DESCRIPTION	GI	ASDU TYPE	FUN	INF	СОТ	COM
Breaker Failure (LBB)	X	2	124	85	1,9	$\uparrow \downarrow$
Start/pickup CB1 Down line	X	2	124	95	1,9	$\uparrow \downarrow$
Start/pickup CB1 Up line	X	2	124	96	1,9	$\uparrow \downarrow$
Start/pickup CB2 Down line	X	2	124	97	1,9	$\leftarrow \\ \downarrow$
Start/pickup CB2 Up line	X	2	124	98	1,9	$\uparrow \downarrow$
*Start/pickup CB1 Down line W/O BM	X	2	124	99	1,9	$\uparrow\downarrow$
*Start/pickup CB2 Up line W/O BM	X	2	124	100	1,9	$\uparrow\downarrow$
*Start/pickup CB3 Down line	X	2	124	101	1,9	$\uparrow\downarrow$
*Start/pickup CB4 Up line	X	2	124	102	1,9	$\uparrow \downarrow$
CB1 Down line trip	-	2	124	120	1	$\uparrow \downarrow$
CB1 Up line trip	-	2	124	121	1	$\uparrow \downarrow$
CB2 Down line trip	-	2	124	122	1	$\uparrow \downarrow$
CB2 Up line trip	-	2	124	123	1	$\uparrow \downarrow$
*CB1 Down line W/O BM	-	2	124	124	1	$\uparrow \downarrow$
*CB2 Up line W/O BM	-	2	124	125	1	$\uparrow\downarrow$
*CB3 Down line trip		2	124	126	1	$\uparrow \downarrow$
*CB4 Up line trip	-	2	124	127	1	$\uparrow\downarrow$

st Applicable only for Without BM (WoBM) mode of operation

MEASURANDS IN MONITOR DIRECTION

Measurands are scaled with a scaling factor of 2.4. To obtain the actual value from raw value, following formulae can be used.

Actual Value =
$$\left(\frac{\text{Raw Value x 2.4}}{4096}\right)$$
 x Primary Current

DESCRIPTION	GI	ASDU TYPE	FUN	INF	СОТ
Measurand supervision PT1	-	9	124	148	2
Measurand supervision PT2	-	9	124	149	2
Measurand supervision PT3	-	9	124	150	2
Measurand supervision PT4	-	9	124	151	2

TIME TAGGED MEASURANDS IN MONITOR DIRECTIONS

DESCRIPTION	GI	ASDU TYPE	FUN	INF	СОТ
PT1 fault voltage	-	4	124	151	1
PT2 fault voltage	-	4	124	152	1
PT3 fault voltage	-	4	124	153	1
PT4 fault voltage	-	4	124	154	1

STANDARD INFORMATION NUMBERS IN CONTROL DIRECTION SYSTEM FUNCTIONS IN CONTROL DIRECTION

DESCRIPTION	GI	ASDU TYPE	FUN	INF	СОТ	COM
Initiation of general interrogation	-	7	255	0	9	GLB
Time Synchronization	-	6	255	0	8	GLB

GENERAL COMMANDS IN CONTROL DIRECTION

DESCRIPTION	GI	ASDU TYPE	FUN	INF	СОТ	COM
RCC Reset	1	20	124	19	20	↑ (PULSE)
Relay Bypass Enable/Disable	-	20	124	126	20	↑↓ (PULSE)

DISTURBANCE RECORD EXTRACTION

The disturbance record extraction procedure in ALIND relays is in conformance with IEC 60870-5-103 standard definition.

ANALOG CHANNEL INFORMATION IN AR 10

	AR 10					
FUN	ACC	PARAMETER				
124	1	X				
124	2	X				
124	3	X				
124	4	X				
124	5	V1				
124	6	V2				
124	7	V3				
124	8	V4				

DIGITAL CHANNEL (TAGS) INFORMATION IN AR 10

		AR 10	
TAG POSITION	FUN/INF NUMBER	SEMANTICS ACCORDING TO TAG POSITION	INPUT/ OUTPUT
0	124/84	GENERAL PICKUP	OUTPUT
1	124/68	GENERAL TRIP	OUTPUT
2	124/120	CB 1 DOWN LINE TRIP	OUTPUT
3	124/121	CB 1 UP LINE TRIP	OUTPUT
4	124/122	CB 2 DOWN LINE TRIP	OUTPUT
5	124/123	CB 2 UP LINE TRIP	OUTPUT
6	124/124	CB 1 DOWN LINE TRIP W/O BM	OUTPUT
7	124/125	CB 2 UP LINE TRIP W/O BM	OUTPUT
8	124/126	CB3 DOWN LINE TRIP W/O BM	OUTPUT
9	124/127	CB4 UP LINE TRIP W/O BM	OUTPUT
10	124/85	LBB TRIP	OUTPUT
11	124/130	CATENARY PT-1 DEAD	OUTPUT
12	124/131	CATENARY PT-2 DEAD	OUTPUT
13	124/132	CATENARY PT-3 DEAD	OUTPUT
14	124/133	CATENARY PT-4 DEAD	OUTPUT
15	124/25	RELAY DISABLE	INPUT
16	124/27	CB3 / BM 1&2 STATUS	INPUT
17	124/28	CB4 / BM 3&4 STATUS	INPUT
18	124/24	RELAY BYPASS ENABLE/DISABLE	INPUT
19	124/19	RCC RESET	INPUT
20	124/111	CB1 CLOSE STATUS	INPUT
21	124/112	CB2 CLOSE STATUS	INPUT
22	124/113	COIL CB1 STATUS	INPUT
23	124/114	COIL CB2 STATUS	INPUT

24	124/119	COIL CB3 STATUS	INPUT
25	124/120	COIL CB4 STATUS	INPUT
26	124/115	BMC1 STATUS	INPUT
27	124/116	BMC2 STATUS	INPUT

Model Implementation Conformance Statement for the IEC 61850 interface in ALIND AR 10 relay version 1.0

Based on UCA International Users Group Testing Sub Committee

Template version 1.0 Date: April 24, 2008

TITLE:	MICS Ver.	2.0
MICS DOCUMENT FOR AR 10 RELAY	DATE: 21 FEBRUARY 2	2024

ALUMINIUM INDUSTRIES LTD | RELAYS DIVISION, THIRUVANANTHAPURAM

1. Introduction

This model implementation conformance statement is applicable for ALIND AR 10 relay. The definitions of all used Logical Devices, Logical Nodes and their associated Common Data Classes, components and associated enumerated values are also included for completeness.

This MICS document specifies the modelling compared to IEC 61850 Edition 2.

2. Logical Device

Logical Device	Description
CONTROL	Controls Domain
MEASUREMENT	Measurements Domain
PROTECTION	Protection Domain
RECORDS	Fault Records Domain
SYSTEM	System Domain

Logical Device data model

Logical Device	Logical Node Instance	Logical Node type	Description
CONTROL	LLNO	LLN01	LLN0 for Logical Device CONTROL
	CNTRL_GGIO1	GGIO_PF_2C	IED control 3 nos.
	LLNO	LLN01	LLN0 for Logical Device MEASURAND
MEASUREMENT	MTR_MMXN1	MMXN_PF_MTR	Measurands PT1, PT2, PT3, PT4
	FLT_MMXN2	MMXN_PF_FLT	Fault values PT1, PT2, PT3, PT4
	LLNO		LLN0 for Logical Device PROTECTION
	LBB_RBRF1	RBRF_PF	Breaker Failure
PROTECTION	CB1DWN_PTOV1	PTOV_PF	CB1 down line
	CB1UP_PTOV2	PTOV_PF	CB1 up line
	CB2DWN_PTOV3	PTOV_PF	CB2 down line
	CB2UP_PTOV4	PTOV_PF	CB2 up line
RECORDS	LLNO	LLN01	LLNO for Logical Device RECORDS
	RDRE1	RDRE_PF	Disturbance recorder
	LLNO	LLN01	LLNO for Logical Device SYSTEM
SYSTEM	LPHD	LPHD_PF	Physical Device Information
	PFALM_GGIO1	GGIO_PFALM3	Alarms
	PFIND_GGIO2	GGIO_PFBI13	Binary Inputs

3. Logical Node List

Following list contains list of logical node classes implemented in device

G: Logical Nodes for generic references	
GGIO (Generic Process I/O)	
L: System Logical Nodes	
LLNO (Logical device LN)	
LPHD (Physical device LN)	
M: Logical Nodes for metering and measurement	
MMXN (Non-Phase Related Measurements)	
P: Logical Nodes for protection functions	
PTOV (Over Voltage)	
R: Logical nodes for protection related functions	
RBRF (Breaker Failure)	
RDRE (Disturbance Recorder Function)	

4. Logical Nodes

The following table use

 $\cdot\,$ M: Data object is mandatory in the IEC 61850-7-4 ED.2.

 $\cdot\,$ O: Data object is optional in the IEC 61850-7-4 ED.2 and is used in the device

• E: Data object is extension to the IEC 61850-7-4 ED.2 and is used in the device

4.1 Logical Node: CNTRL_GGIO1

Description: Generic Process I/O

LN Class: GGIO

Data Object	CDC type	Description	M/O	
Common Logical Node Information				
Beh	ENS	Behavior	М	
Controls	Controls			
SPCSO1	SPC	Generic single point controllable status output (RCC Reset Command)	0	
SPCSO2	SPC	Generic single point controllable status output (Relay Bypass Enable/Disable)	0	

4.2 Logical Node: PFALM_GGIO1

Description: Generic Process I/O

LN Class: GGIO

Data Object	CDC type	Description	M/O		
Common Logical Node	Common Logical Node Information				
Beh	ENS	Behavior	M		
Status Information					
Alm1	CDC	General Single Alarm	0		
Aimi	SPS	(Protection Healthy/Active)			
Alm2	SPS	General Single Alarm	0		
AIIIIZ		(Local Parameter Setting Change)			
Alm3	CDC	General Single Alarm	0		
AIIII3	SPS	(Relay Disable)			
Alm4	CDC	General Single Alarm			
	SPS	(Relay Error)	0		

4.3 Logical Node: PFIND_GGIO2

Description: Generic Process I/O

LN Class: GGIO

Data Object	CDC type	Description	M/O
Common Logical Node	e Information		
Beh	ENS	Behavior	М
Status Information			
Ind1	SPS	General Indication	0
IIIGI	313	(RCC reset)	0
Ind2	SPS	General Indication	0
IIIuz	31 3	(Catenary PT-1 dead)	Ŭ
Ind3	SPS	General Indication	О
	31 3	(Catenary PT-2 dead)	
Ind4	SPS	General Indication	О
	3.3	(Catenary PT-3 dead)	
Ind5	SPS	General Indication	0
	3.3	(Catenary PT-4 dead)	
Ind6	SPS	General Indication	0
	3. 3	(CB1 close status)	
Ind7	SPS	General Indication	О
	3. 3	(CB2 close status)	
Ind8	SPS	General Indication	О
	3. 3	(BMC status)	
Ind9	SPS	General Indication	0
	3. 3	(BM 1 & 2 status)	
Ind10	SPS	General Indication	0
	3.3	(BM 3 & 4 status)	
Ind11	SPS	General Indication	0
	3. 3	(Coil CB1 status)	
Ind12	SPS	General Indication	0
	3. 3	(Coil CB2 status)	
Ind13	SPS	General Indication	О
111013	3. 3	(Relay Bypass Enable/Disable)	

4.4 Logical Node: LLNO Description: Logical Node Zero

LN Class: LLN0

Data Object	CDC type	Description	M/O	
Common Logical Node Information				
Beh	ENS	Behavior	М	
Mod	ENC	Mode	М	
Health	ENS	Health	М	
NamPlt	LPL	Name Plate	М	

4.5 Logical Node: LPHD1

Description: Physical Device Information

LN Class: LPHD

Data Object	CDC type	Description	M/O
Descriptions			
PhyNam	DPL	Device Name Plate	М
Status Information			
PhyHealth	ENC	Device Health	М
Proxy	ENS	Indicates if this Logical Node is Proxy	М

4.6 Logical Node: MTR_MMXN1

Description: Non-Phase Related Measurement (Measurand Values)

LN Class: MMXN

Data Object	CDC type	Description	M/O/E		
Common Logical Node	Information				
Beh	ENS	Behavior	М		
Measured and Metere	Measured and Metered Values				
Vol1	MV	Measurand Voltage V1	Е		
Vol2	MV	Measurand Voltage V2	Е		
Vol3	MV	Measurand Voltage V3	Е		
Vol4	MV	Measurand Voltage V4	Е		

4.7 Logical Node: FLT_MMXN2

Description: Non-Phase Related Measurement (Feeder Fault Values)

LN Class: MMXN

Data Object	CDC type	Description	M/O/E		
Common Logica	Common Logical Node Information				
Beh	ENS	Behavior	M		
Measured and N	Metered Values		<u>.</u>		
Vol1	MV	Fault Voltage V1	E		
Vol2	MV	Fault Voltage V2	E		
Vol3	MV	Fault Voltage V3	E		

Vol4	MV	Fault Voltage V4	E
------	----	------------------	---

4.8 Logical Node: CB1DWN_PTOV1

Description: Over Voltage Protection

LN Class: GGIO

Data Object	CDC type	Description	M/O		
Common Logical Node Information					
Beh	ENS	Behavior	Μ		
Status Information	Status Information				
Str	ACD	Start	M		
Ор	ACT	Operate	M		

4.9 Logical Node: CB1UP_PTOV2

Description: Over Voltage Protection

LN Class: GGIO

Data Object	CDC type	Description	M/O		
Common Logical Node I	Common Logical Node Information				
Beh	ENS	Behavior	М		
Status Information	Status Information				
Str	ACD	Start	М		
Ор	ACT	Operate	М		

4.10 Logical Node: CB2DWN_PTOV3

Description: Over Voltage Protection

LN Class: GGIO

Data Object	CDC type	Description	M/O		
Common Logical Node	Common Logical Node Information				
Beh	ENS	Behavior	M		
Status Information	Status Information				
Str	ACD	Start	М		
Ор	ACT	Operate	M		

4.11 Logical Node: CB2UP_PTOV4

Description: Over Voltage Protection

LN Class: GGIO

Data Object	CDC type	Description	M/O		
Common Logical Node Information					
Beh	ENS	Behavior	М		
Status Information					

Str	ACD	Start	М
Ор	ACT	Operate	M

4.12 Logical Node: LBB_RBRF1

Description: Breaker Failure

LN Class: RBRF

Data Object	CDC type	Description	M/O
Common Logical Node Information			
Beh	ENS	Behavior	М
Status Information			
OpEx	ACT	Breaker Failure External Trip	М

4.13 Logical Node: RDRE1

Description: Disturbance Recorder Function

LN Class: RDRE

Data Object	CDC type	Description	M/O
Common Logical Node Information			
Beh	ENS	Behavior	М
Status Information			
RcdMade	SPS	TRUE = disturbance recording complete	М
FltNum	INS	Fault Number	М

5. Enum types

Enum types used are listed in this clause.

5.1 Mod

Value	Description
1	on
2	blocked
3	test
4	test/blocked
5	off

5.2 ctlModel

Value	Description
0	status-only
1	direct-with-normal-security
2	sbo-with-normal-security
3	direct-with-enhanced-security
4	sbo-with-enhanced-security

5.3 Health

Value	Description
1	Ok
2	Warning
3	Alarm

ALUMINIUM INDUSTRIES LTD

Relays division, Kavinpuram, Vilappilsala (P.O) Thiruvananthapuram, Kerala, India-695 573 2: 0471-2379704, 2379503

: www.alindrelays.com